Invariant σ -ideals with analytic base on good Cantor measure spaces

Taras Banakh, Robert Rałowski, Szymon Żeberski Wrocław University of Science and Technology

Winter School Hejnice, 2017

Consider $(2^{\omega}, \lambda)$, where λ is the standard product measure on 2^{ω} .

- $\mathcal{I} \subseteq P(2^{\omega})$ is a σ -ideal if
 - $A \in \mathcal{I}$ implies that $P(A) \subseteq \mathcal{I}$,
 - $A_0, A_1, A_2, \ldots \in \mathcal{I}$ imples that $\bigcup_{n \in \omega} A_n \in \mathcal{I}$.
- ▶ \mathcal{I} has Borel (analytic) base, if $(\forall A \in \mathcal{I})(\exists B \in \mathcal{I})(A \subseteq B \land B \text{ is Borel (analytic)})$
- *I* is invariant, if *I* is invariant under maesure-preserving homeomrphisms, i.e (∀h ∈ H_λ(2^ω))(∀A ∈ I)(h[A] ∈ I).
- \mathcal{I} is nontrivial, if $2^{\omega} \notin \mathcal{I}$ and \mathcal{I} contains an uncountable set.

Problem.

Classify all nontrivial invariant σ -ideals \mathcal{I} having Borel base.

Definition.

 (X, μ) is called a Cantor measure space if the topological space X is homeomorphic to the Cantor cube $\{0, 1\}^{\omega}$ and the measure $\mu : \mathcal{B}(X) \to [0, \infty)$ is *continuous* in the sense that $\mu(\{x\}) = 0$ for any point $x \in X$.

Definition.

 (X, μ) is called a Cantor measure space if the topological space X is homeomorphic to the Cantor cube $\{0, 1\}^{\omega}$ and the measure $\mu : \mathcal{B}(X) \to [0, \infty)$ is *continuous* in the sense that $\mu(\{x\}) = 0$ for any point $x \in X$.

Example.

There is a Cantor measure space (X, μ) that supports 2^{c} pairwise distinct invariant σ -ideals with Borel base.

E.Akin, *Good measures on Cantor space*, Trans. Amer. Math. Soc. **357**:7 (2005), 2681–2722.

Definition.

A Cantor measure space (X, μ) is called good if its measure μ is good in the sense of Akin, i.e.,

- strictly positive (which means that µ(U) > 0 for any non-empty open set U ⊆ X),
- ▶ μ satisfies the Subset Condition which means that for any clopen sets $U, V \subseteq X$ with $\mu(U) < \mu(V)$ there is a clopen set $U' \subseteq V$ such that $\mu(U') = \mu(U)$.
- E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc.
 357:7 (2005), 2681–2722.

- All infinite compact metrizable zero-dimensional topological groups G endowed with the Haar measure are good Cantor measure spaces.
- By Akin's Theorem,
 - E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. 357:7 (2005), 2681–2722.

a Cantor measure space (X, μ) is isomorphic to a (monothetic) compact topological group G endowed with the Haar measure if and only if (X, μ) is good and $1 \in \mu[\operatorname{Clop}(X)] \subseteq \mathbb{Q} \cap [0, 1].$

On each measure space (X, μ) consider the following four invariant σ -ideals with Borel base:

- the σ-ideal *M* of meager subsets of X (it is generated by closed nowhere dense subsets of X);
- the σ-ideal N = {A ⊆ X : µ(A) = 0} of null subsets of (X, µ) (it is generated by Borel subsets of zero µ-measure);

(日) (同) (三) (三) (三) (○) (○)

- the σ -ideal $\mathcal{M} \cap \mathcal{N}$ of meager null subsets of (X, μ) ;
- the σ -ideal \mathcal{E} generated by closed null subsets of (X, μ) .

Main theorem

Each non-trivial invariant σ -ideal \mathcal{I} with analytic base on a good Cantor measure space (X, μ) is equal to one of the σ -ideals:

 $\mathcal{E},\ \mathcal{M}\cap\mathcal{N},\ \mathcal{M} \text{ or } \mathcal{N}.$

Lemma 1. (Akin)

E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. **357**:7 (2005), 2681–2722.

Two good Cantor measure spaces (X, μ) and (Y, λ) are isomorphic if and only if $\mu[\operatorname{Clop}(X)] = \lambda[\operatorname{Clop}(Y)].$

Lemma 1. (Akin)

E.Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. **357**:7 (2005), 2681–2722.

Two good Cantor measure spaces (X, μ) and (Y, λ) are isomorphic if and only if $\mu[\operatorname{Clop}(X)] = \lambda[\operatorname{Clop}(Y)].$

Lemma 2.

Let (X, μ) be a good Cantor measure space, $U \subseteq X$ be a clopen set and $K \subseteq U$ be a compact subset. For every $\alpha \in \mu[\operatorname{Clop}(X)]$ with $\mu(K) < \alpha \leq \mu(U)$ there is a clopen subset $V \subseteq U$ such that $K \subseteq V$ and $\mu(V) = \alpha$.

Lemma 3. (Ryll-Nardzewski)

Any homeomorphism $f : A \to B$ between closed nowhere dense subsets $A, B \subseteq X$ of the Cantor cube $X = \{0, 1\}^{\omega}$ extends to a homeomorphism $\overline{f} : X \to X$ of X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma 3. (Ryll-Nardzewski)

Any homeomorphism $f : A \to B$ between closed nowhere dense subsets $A, B \subseteq X$ of the Cantor cube $X = \{0, 1\}^{\omega}$ extends to a homeomorphism $\overline{f} : X \to X$ of X.

Lemma 4.

Any measure-preserving homeomorphism $f : A \to B$ between closed nowhere dense subsets $A, B \subseteq X$ of a good Cantor measure space (X, μ) extends to a measure-preserving homeomorphism $\overline{f} : X \to X$ of X.

Lemma 3. (Ryll-Nardzewski)

Any homeomorphism $f : A \to B$ between closed nowhere dense subsets $A, B \subseteq X$ of the Cantor cube $X = \{0, 1\}^{\omega}$ extends to a homeomorphism $\overline{f} : X \to X$ of X.

Lemma 4.

Any measure-preserving homeomorphism $f : A \to B$ between closed nowhere dense subsets $A, B \subseteq X$ of a good Cantor measure space (X, μ) extends to a measure-preserving homeomorphism $\overline{f} : X \to X$ of X.

Proposition 1.

 $\mathcal{E} \subseteq \mathcal{I}.$

If an analytic subset $A \subseteq X$ of a Cantor measure space (X, μ) is not contained in the σ -ideal \mathcal{E} , then A contains a G_{δ} -subset G of X such that $\mu(G) = 0$ and the measure $\mu \upharpoonright \overline{G}$ is strictly positive.

If an analytic subset $A \subseteq X$ of a Cantor measure space (X, μ) is not contained in the σ -ideal \mathcal{E} , then A contains a G_{δ} -subset G of X such that $\mu(G) = 0$ and the measure $\mu \upharpoonright \overline{G}$ is strictly positive.

Lemma 6.

If $A \subseteq X$ is a closed subset of positive measure in a good Cantor measure space (X, μ) , then for any $\varepsilon > 0$ there are homeomorphisms $h_1, \ldots, h_n \in \mathcal{H}_{\mu}(X)$ such that the set $B = \bigcup_{i=1}^n h_i[A]$ has measure $\mu(B) > \mu(X) - \varepsilon$.

If an analytic subset $A \subseteq X$ of a Cantor measure space (X, μ) is not contained in the σ -ideal \mathcal{E} , then A contains a G_{δ} -subset G of X such that $\mu(G) = 0$ and the measure $\mu \upharpoonright \overline{G}$ is strictly positive.

Lemma 6.

If $A \subseteq X$ is a closed subset of positive measure in a good Cantor measure space (X, μ) , then for any $\varepsilon > 0$ there are homeomorphisms $h_1, \ldots, h_n \in \mathcal{H}_{\mu}(X)$ such that the set $B = \bigcup_{i=1}^n h_i[A]$ has measure $\mu(B) > \mu(X) - \varepsilon$.

Lemma 7.

Let (X, μ) , (Y, λ) be Cantor measure spaces such that $\mu(X) < \lambda(Y)$ and the measure λ is strictly positive. Let $G_X \subseteq X$ and $G_Y \subseteq Y$ be two G_{δ} -sets of measure $\mu(G_X) = \lambda(G_Y) = 0$ such that G_Y is dense in Y. Then there is a measure-preserving embedding $f : X \to Y$ such that $f[G_X] \subseteq G_Y$.

If an analytic subset $A \subseteq X$ of a Cantor measure space (X, μ) is not contained in the σ -ideal \mathcal{E} , then A contains a G_{δ} -subset G of X such that $\mu(G) = 0$ and the measure $\mu \upharpoonright \overline{G}$ is strictly positive.

Lemma 6.

If $A \subseteq X$ is a closed subset of positive measure in a good Cantor measure space (X, μ) , then for any $\varepsilon > 0$ there are homeomorphisms $h_1, \ldots, h_n \in \mathcal{H}_{\mu}(X)$ such that the set $B = \bigcup_{i=1}^n h_i[A]$ has measure $\mu(B) > \mu(X) - \varepsilon$.

Lemma 7.

Let (X, μ) , (Y, λ) be Cantor measure spaces such that $\mu(X) < \lambda(Y)$ and the measure λ is strictly positive. Let $G_X \subseteq X$ and $G_Y \subseteq Y$ be two G_{δ} -sets of measure $\mu(G_X) = \lambda(G_Y) = 0$ such that G_Y is dense in Y. Then there is a measure-preserving embedding $f : X \to Y$ such that $f[G_X] \subseteq G_Y$.

Proposition 2.

If $\mathcal{I} \not\subseteq \mathcal{E}$, then $\mathcal{M} \cap \mathcal{N} \subseteq \mathcal{I}$.

Lemma 8.

Let (X, μ) be a good Cantor measure space, A be a closed nowhere dense subset and $B \subseteq X$ be a Borel subset of measure $\mu(B) > \mu(A)$ in X. Then there is a measure-preserving homeomorphism $h: X \to X$ such that $h[A] \subseteq B$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma 8.

Let (X, μ) be a good Cantor measure space, A be a closed nowhere dense subset and $B \subseteq X$ be a Borel subset of measure $\mu(B) > \mu(A)$ in X. Then there is a measure-preserving homeomorphism $h: X \to X$ such that $h[A] \subseteq B$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition 3.

If $\mathcal{I} \not\subseteq \mathcal{N}$, then $\mathcal{M} \subseteq \mathcal{I}$.

Lemma 9.

Let (X, μ) be a good Cantor measure space, and d be a metric generating the topology of X. Let $B \subseteq X$ be a Borel subset of measure $\mu(B) = \mu(X)$. Let $A \subseteq C$ be two closed nowhere dense subsets in X such that $A \subseteq B$. For any $\varepsilon > 0$ there exists a measure-preserving homeomorphism $h : X \to X$ such that $h \upharpoonright A = \operatorname{id} \upharpoonright A, h[C] \subseteq B$, and $d_{\mathcal{H}}(h, \operatorname{id}) \leq \varepsilon$.

Lemma 9.

Let (X, μ) be a good Cantor measure space, and d be a metric generating the topology of X. Let $B \subseteq X$ be a Borel subset of measure $\mu(B) = \mu(X)$. Let $A \subseteq C$ be two closed nowhere dense subsets in X such that $A \subseteq B$. For any $\varepsilon > 0$ there exists a measure-preserving homeomorphism $h : X \to X$ such that $h \upharpoonright A = \operatorname{id} \upharpoonright A, h[C] \subseteq B$, and $d_{\mathcal{H}}(h, \operatorname{id}) \leq \varepsilon$.

Lemma 10.

Let (X, μ) be a good Cantor measure space and d be a metric generating the topology of X. Let $B \subseteq X$ be a Borel subset of measure $\mu(B) = \mu(X)$. For any $\varepsilon > 0$, homeomorphism $f \in \mathcal{H}_{\mu}(X)$ and closed nowhere dense subsets $A \subseteq C$ in X with $f[A] \subseteq B$, there exists a homeomorphism $g \in \mathcal{H}_{\mu}(X)$ such that $g \upharpoonright A = f \upharpoonright A, g[C] \subseteq B$ and $d_{\mathcal{H}}(f,g) < \varepsilon$.

Lemma 11. For any meager F_{σ} -sets $A, B \subseteq X$ of measure $\mu(A) = \mu(B) = \mu(X)$ in a good Cantor measure space (X, μ) there is a measure-preserving homeomorphism $h \in H_{\mu}(X)$ such that h[A] = B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

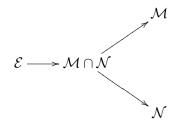
Lemma 11. For any meager F_{σ} -sets $A, B \subseteq X$ of measure $\mu(A) = \mu(B) = \mu(X)$ in a good Cantor measure space (X, μ) there is a measure-preserving homeomorphism $h \in H_{\mu}(X)$ such that h[A] = B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition 4.

If $\mathcal{I} \not\subseteq \mathcal{M}$, then $\mathcal{N} \subseteq \mathcal{I}$.

Thank you for your attention!



Taras Banakh, Robert Rałowski, Szymon Żeberski, Classifying invariant σ-ideals with analytic base on good Cantor measure spaces, Proc. Amer. Math. Soc., 144 (2016) 837-851.

Open problem.

Classify all nontrivial invariant σ -ideals \mathcal{I} having Borel base for homogenous (X, μ) .